

Search for New Physics with Jets in CMS

Suvadeep Bose

University of Nebraska Lincoln

Outline

- □ Large Hadron Collider
- Compact Muon Solenoid
- ☐ What is a Jet?
- Jets in CMS
- Jet calibration and Performance
- Recent Searches for New Physics with Jets
 - Search for quark compositeness with dijet angular distributions
 - Search for resonances in dijet angular ratio
 - Search for resonances in Dijet Mass Spectrum
 - Search for pair produced dijet resonances with four jets
- ☐ Conclusion and Outlook

CERN – European Centre for Nuclear Research

CERN accelerator complex

■ General concept of accelerators:

- Ionize some atoms so they become charged
- Speed them up using electrical fields
- Curve them in a manageable track using magnetic fields
- Once at sufficient speed, smash them into something!
- Have particle detectors handy to "see" what comes out. New particles perhaps?

CERN Accelerator:

- A Proton Source
- Radio Freq Quadrupole (750 keV)
- LINAC2 (50 MeV)
- PS Booster (1.4 GeV)
- PS (25 GeV)
- SPS (450 GeV)
- LHC (7 TeV)

The LHC ring and its detectors

□ 100 m below the surface | 27 km in circumference

CMS: Compact Muon Solenoid

What is Luminosity?

Instantaneous luminosity is connected to the beam properties as:

normalized transverse emmittance

■ The quantity often used in plots: Integrated Luminosity: $\int L dt$

If Instantaneous Lumi L = 10³³ cm⁻² s⁻¹ then after 1 year of runnning Integrated Luminosity ~ 10 pb⁻¹

The event rate for a process with cross section σ is:

$$N_{event} = L\sigma_{process}$$

[cross-section unit:

1 barn =
$$10^{-28}$$
 m² = 10^{-24} cm²]

Jet Physics at the LHC

- Total cross section ~100-120 mb
- The goal at startup was to re-establish the standard model (i.e., QCD, SM candles) in the LHC energy regime
- $-\sigma(p_T>250 \text{ GeV})$ 100x higher than Tevatron
- Electroweak

10x higher than Tevatron

– Top

100x higher than Tevatron

- Jet measurements at LHC are important:
- confront pQCD at the TeV scale
- constrain Parton Distribution Functions
- probe strong coupling constant
- Important backgrounds for SUSY and BSM searches
- sensitive to new physics
- quark substructure, excited quarks, dijet resonances, etc.
- QCD processes are not statistics limited!

CMS Trigger System

- □ LHC will produce interactions at 40 MHz frequency, but only a small fraction of these events can be written on disk due to limitation in disk i/o capability.
- □ The vast majority of events produced is not interesting, because it involves low transferred momentum interactions (minimum bias events).
- □ A trigger system is needed to save interesting events at the highest possible rate.
- □ The expected rate of events written to disk is foreseen to be 100 Hz.
- ☐ Two-tiered system
 - L1: hardware, firmware
 - L2,L3 merged into HLT (high-level software)

Why should we care about jets?

- Jets are everywhere; their cross section is orders of magnitude higher than most other processes.
- Jets can fake as γ, e, μ, τ
 - Probability of jet faking a γ ~10⁻⁴
 - Probability of faking e/μ ~10⁻⁵, but some jets have real lepton, e.g., b-jets
 - Probability of faking a τ ~10⁻³
- Light quark or gluon jets can fake b-quark jet at the % level
- Missing Transverse Energy must be corrected for jet energy measurements.
- If jets are not your signal they are most certainly your background!

What are Jets?

Experimental observation of Jets

Why do searches for new physics with jets?

- Most exotic searches at colliders involve MET and/or leptons/photons
 - Strong production
 - Electroweak decays
 - Backgrounds suppressed
- New physics -> Jets?
 - Strong production cross-section
 - Strong decays (multi-jet)
 - Backgrounds severe

How are Jets defined?

☐ A jet algorithm is a set of mathematical rules that reconstruct unambiguously the

properties of a jet.

- ☐ Fixed cone algorithms:
 - ♦ Iterative Cone (CMS) / JetClu (ATLAS)
 - ♦ Seedless Infrared Safe Cone (SISCone)
- Successive recombination algorithms:

$$d_{ij} = p_{T,i}^{2p}$$
 $d_{ij} = \min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta R_{ij}^2}{D^2}$

Anti-kT

- Different inputs to the jet algorithm lead to different types of jets:

- Jets plus Tracks: Correct calorimeter jets using momentum of tracks.
- → Particle Flow Jets: Clustered from identified particles, reconstructed using all detector components.

Jet energy scale and does it matter?

- We do not see quarks and gluons
- We do not see all stable particles:
- ☐ Factors impacting the JES include
 - Calorimeter response
 - Effect of B field (sweeps particles away)
 - Energy offset (i.e. energy not from the hard scattering process)
 - Material in front of the calorimeter
 - Out-of-cone showering
 - Resolution

 Unsmearing
- ☐ JES uncertainties typically are the largest systematic uncertainty in jet measurements

New Physics searches with (Di)Jets

- □ Search for quark compositeness with dijet angular distributions (*)
- Search for resonances in dijet angular ratio
- ☐ Search for resonances in dijet mass spectrum
- Search for pair produced dijet resonances with four jets

(*) Will go through one analysis in detail and others have followed similar steps

First:: Sanity check: Inclusive Jet cross section

- □ The cross section measurement extends from 18 GeV to 1.1 TeV in jet p_T
- □ Good agreement with NLO theory predictions over 10 orders of magnitude in 6 rapidity bins

Dijet system

Dijet invariant mass is defined as:

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

Highest Mass: $M_{jj} = 3.954 \text{ TeV}$

Highest $M_{ij} = 3954 \text{ GeV}$, Chi = 1.75

	167746-314-385009283		
Jet	рТ	eta	phi
0	1799.5	0.38	-0.98
1	1799.2	-0.18	2.15
2	36.4	1.05	-1.28
3	15.7	0.82	-0.41

Dijet angular distributions

Dijet angular distributions

$d\sigma \sim [QCD + Interference]$ + Compositeness]

$$\alpha_s^2(\mu^2)\frac{1}{\hat{t}^2} \qquad \alpha_s(\mu^2)\frac{1}{\hat{t}}\cdot\frac{\hat{u}^2}{\Lambda^2}$$

 $d\sigma \sim 1/(1-\cos\theta^*)^2$ angular distribution

 $\sqrt{\hat{s}} \ll \Lambda$

$d\sigma \sim (1+\cos\theta^*)^2$ angular distribution

From $\cos \theta^*$ variable to χ

$$y^* = \frac{1}{2} |y_1 - y_2|$$

$$\chi_{dijet} = e^{2y^*}$$

$$1 + |\cos \theta^*|$$

$$= \frac{1 + \left|\cos\theta^*\right|}{1 - \left|\cos\theta^*\right|}$$

(for collinear massless partons)

dN/dx sensitive to contact interactions

Quark compositeness models in theory

☐ Color singlet contact interaction models:

$$L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL} (\overline{q}_L \gamma^{\mu} q_L) (\overline{q}_L \gamma_{\mu} q_L) + \eta_{RR} (\overline{q}_R \gamma^{\mu} q_R) (\overline{q}_R \gamma_{\mu} q_R) + 2\eta_{RL} (\overline{q}_R \gamma^{\mu} q_R) (\overline{q}_L \gamma_{\mu} q_L) \right],$$

- Subscripts L and R refer to the chiral projections (helicity) of the quark fields
- η_{LL}, η_{RR}, and η_{RL} can be 0, +1, or -1.
- The various combinations of η_{LL} , η_{RR} , and η_{RL} correspond to different Contact Interaction models.

$$\Lambda = \Lambda_{LL}^{\pm} \text{ for } (\eta_{LL}, \eta_{RR}, \eta_{RL}) = (\pm 1, 0, 0),
\Lambda = \Lambda_{RR}^{\pm} \text{ for } (\eta_{LL}, \eta_{RR}, \eta_{RL}) = (0, \pm 1, 0),
\Lambda = \Lambda_{VV}^{\pm} \text{ for } (\eta_{LL}, \eta_{RR}, \eta_{RL}) = (\pm 1, \pm 1, \pm 1),
\Lambda = \Lambda_{AA}^{\pm} \text{ for } (\eta_{LL}, \eta_{RR}, \eta_{RL}) = (\pm 1, \pm 1, \pm 1),
\Lambda = \Lambda_{(V-A)}^{\pm} \text{ for } (\eta_{LL}, \eta_{RR}, \eta_{RL}) = (0, 0, \pm 1).$$

- □ NLO code available for Λ[±]_{LL} (Phys.Rev.Lett. 106 (2011) 142001) Other models available at LO in Pythia8
- For these models evaluate prediction from "QCD+CI" = QCD_{NLO} + QCD+CI_{LO} QCD_{LO}

Dijet angular distributions with \sqrt{s} =7TeV

- Good agreement with p-QCD
- In the highest mass bin the data do not follow any compositeness models

hep-ex/1202.5535

Various systematics in the dijet angular distribution

Source of Uncertainty	$0.4 < M_{jj} < 0.6 \text{TeV}$	$M_{jj} > 3 \text{TeV}$
Source of Uncertainty	(%)	(%)
Jet energy scale	1.0	0.3
Jet energy resolution	0.2	0.6
Jet energy resolution tails	0.5	4.6
Unfolding, MC modeling	0.2	4.9
Unfolding, detector simulation	1.3	2.0
Total experimental systematic uncertainty	1.7	7.0
Statistical uncertainty	2.5	31.6
μ_r and μ_f scales	5.6	14.9
PDF (CTEQ6.6)	0.5	0.7
Non-perturbative corrections	1.7	1.1
Total theoretical systematic uncertainty	5.9	15.0

• Approximate numbers summarizing the maximal uncertainty on the shape of the χ -distributions in two mass bins

Setting limits to various models

- Without finding an excess of new physics signal events in the χ -distributions the existing data is used to set exclusion limits to those models
- Use log likelihood ratio $\ln(\frac{L_{\rm QCD+CI}}{L_{\rm QCD}})$ to discriminate between QCD only hypothesis and QCD+CI hypothesis.

 Observed limits stronger than expected limits due to downward fluctuation in highest mass bin

hep-ex:1202.5535

CI model	Observed limit (TeV)	Expected limit (TeV)	
NLO $\Lambda_{LL/RR}^+$	7.5	$7.0^{+0.4}_{-0.6}$	
NLO $\Lambda_{LL/RR}^-$	10.5	$9.7^{+1.0}_{-1.7}$	
LO $\Lambda_{LL/RR}^+$	8.4	$7.9^{+0.5}_{-0.7}$	
LO $\Lambda_{LL/RR}^-$	11.7	$10.9^{+1.7}_{-2.4}$	
LO $\Lambda_{VV/AA}^+$	10.4	$9.5^{+0.5}_{-1.0}$	
LO $\Lambda_{VV/AA}^-$	14.5	$13.7^{+2.9}_{-2.6}$	
LO $\Lambda^{VV/AA}$ LO $\Lambda^\pm_{(V-A)}$	8.0	$7.8^{+1.0}_{-1.1}$	

Most stringent limit to date (for some models)

Dijet centrality ratio

- QCD dominated by t-channel scattering which produces more forward jets than central jets.
- ☐ Generic contact interaction model[1] based on composite quarks enhances isotropic jet production yielding more central jets than does QCD.
- [1] Eichten, Kane, Peskin PRL **50**, 811 (1983).

- Look for excess of central dijet events compared to forward dijets
- Measure ratio of inner (|η|<0.7) to outer (0.7<|η|<1.3) jets in bins of dijet mass.
- Excess of inner jets implies new physics

☐ There are more outer dijets than inner dijets as expected from QCD.

Dijet centrality ratio - II

$$R_{\eta} = \frac{N(|\eta| < 0.7)}{N(0.7 < |\eta| < 1.3)}$$

Dijet Mass (GeV)

- Measured dijet angular ratio is fairly flat vs dijet mass, in good agreement with PYTHIA prediction
- ☐ There is no evidence for new physics.
- Excited quarks from PYTHIA would give excludable peaks up to ~3TeV

Limits to excited quark model

- ☐ Limits apply to excited quarks or any isotropically decaying qg resonance.
- ☐ Including effects of systematic uncertainties, the limit on an excited quark mass is 2.8 TeV expected and 3.2 TeV observed, very close to limit without systematics.

- ☐ The data are in good agreement with the standard model background. There is no evidence for a dijet resonance.
- ☐ We exclude an excited quark of mass of 3.2 TeV at 95% C.L., where the expected limit is 2.8 TeV.

Models of narrow s-channel dijet resonances

String resonances (S), which are Regge excitations of quarks and gluons in string theory and decay predominantly to gg Scalar diquarks (D), which decay to qq and $q\bar{q}q\bar{q}$, predicted by a grand unified theory based on the E6 gauge symmetry group Mass-degenerate excited quarks (q*), which decay to qg, predicted if quarks are composite objects; the compositeness scale is set to be equal to the mass of the excited quark Axial-vector particles called axigluons (A), which decay to $q\overline{q}$, predicted in a model where the symmetry group SU(3) of QCD is replaced by the chiral symmetry $SU(3)_{l} xSU(3)_{R}$ Color-octet colorons (C), also decaying to $q\overline{q}$, predicted by the flavouruniversal coloron model, embedding the SU(3) symmetry of QCD in a larger gauge group New gauge bosons (W' and Z'), which decay to $q\bar{q}$, predicted by models that include new gauge symmetries; the W' and Z' bosons are assumed to have standard model couplings Randall-Sundrum (RS) gravitons (G), which decay to $q\overline{q}$ and gg, predicted in

the RS model of extra dimensions; the value of the dimensionless coupling

 $\kappa/\mathbf{M}_{\rm Pl}$ is chosen to be 0.1

Search for dijet mass resonance

- ☐ The invariant mass spectrum of dijets is predicted to fall steeply and smoothly by Quantum Chromodynamics (QCD).
- ☐ Many extensions of the SM predict the existence of new massive objects that couple to quarks and gluons giving rise to resonances in the dijet mass spectrum.

■ Look for bumps in dijet mass spectrum

No New Physics is observed with 1 fb⁻¹ Set Limits to various models

Search for dijet mass resonance - II

■ Wiggles in limit reflect structures in data

Setting limits to various resonance models

■ We use pseudo-experiments to calculate the expected limits

★ Most stringent limit to date (for some models)

Model	Excluded Mass (TeV)	
	Observed	Expected
String Resonances	4.00	3.90
Excited Quarks	2.49	2.68
E6 Diquarks	3.52	3.28
Axigluons/ Colorons	2.47	2.66
W' Bosons	1.51	1.40

Statistical fluctuations of data give slightly different observed and expected limits

Pair produced dijet resonance

- ☐ Focus on physics signals from new colored particles, produced strongly in pairs, that decay hadronically to dijets.
- ☐ These signals, which include pair-produced color-octet scalars or vectors, can be produced from gluon-gluon (gg) or quark-antiquark ($q\overline{q}$) interactions
- ☐ Search for pair-produced narrow resonances each decaying into a pair of jets, using the paired dijet mass spectrum in four-jet final states
- Benchmark model: pair production of Colorons [Phys. Lett. **B670**, 119 (2008)] which decay to quark anti-quark pairs ($q\overline{q}$, gg -> CC -> $q\overline{q}$ $q\overline{q}$)

Paired dijet mass event

Run: 166380

Event: 417060509

Pair1 (1,4) - mass = 1.075 TeV Pair2 (2,3) - mass = 1.081 TeV

Background and signal shapes and limit

- 4-parameter parameterization as in Dijet Resonance search (blue solid).
- Both model the data well
- No evidence for new physics
- Clearly excluded at low resonance mass

□ We exclude pair production of colorons with mass between320 and 580 GeV at 95% C.L.

Conclusions

☐ Jets are everywhere in CMS ☐ For study of any physics if jets are not your signal, then they are certainly your background ☐ CMS has done exceptionally well in re-establishing the standard model and now started search for new physics ☐ Important results with dijets show CMS's strength in very precise measurement and potential for many more new results ☐ Set most stringent limits to many theoretical models of new physics superseding earlier collider physics results ☐ LHC era is upon us! Stay tuned for more interesting physics!

Outlook

- \square 2011 data (\sqrt{s} =7TeV) produced many nice analyses searching for new physics signature with jets in the final state
- We have many analyses with full 2011 data to be converged soon for publication which includes Multijet resonance, searches for compositeness with inclusive jets
- □ Searches for extra dimensions with Monojets and Mono photons have also been carried out in CMS – the next week's speaker will talk in details about them
- \square 2012 data (\sqrt{s} =8TeV) just started to come
- □ The search for new physics is ON
- With higher Pile Up (PU) the searches will have to be more careful about the effect of PU in the analyses
- □ CMS has chosen High priority analyses for 2012 and Dijets are one of them

One of the 1st recorded 8 TeV collisions

Thank you for your attention!